Store-operated Ca2+ entry sustains the fertilization Ca2+ signal in pig eggs

Wang C, Zhang L, Jaeger L A, et al. Biology of reproduction, 2015, 93(1): 25, 1-8.

The role of store-operated Ca(2+) entry (SOCE) in the maintenance of sperm-induced Ca(2+) oscillations was investigated in porcine eggs. We found that 10 μM gadolinium (Gd(3+)), which is known to inhibit SOCE, blocked Ca(2+) entry that was triggered by thapsigargin-induced store depletion and also caused an abrupt cessation of the fertilization Ca(2+) signal. In a similar manner 3,5-bis(trifluoromethyl)pyrazole 2 (20 μM), and tetrapandin-2 (10 μM), potent SOCE inhibitors, also blocked thapsigargin-stimulated Ca(2+) entry and disrupted the Ca(2+) oscillations after sperm-egg fusion. The downregulation of Stim1 or Orai1 in the eggs did not alter the Ca(2+) content of the intracellular stores, whereas co-overexpression of these proteins led to the generation of irregular Ca(2+) transients after fertilization that stopped prematurely. We also found that thapsigargin completely emptied the endoplasmic reticulum, and that the series of Ca(2+) transients stopped abruptly after the addition of thapsigargin to the fertilized eggs, indicating that the proper reloading of the intracellular stores is a prerequisite for the maintenance of the Ca(2+) oscillations. These data strengthen our previous findings that in porcine eggs SOCE is a major signaling cascade that is responsible for sustaining the repetitive Ca(2+) signal at fertilization.

Products Used in this Publication

Cat. # Product Name Price
T21002 tetrapandin-2 Inquiry

Related Products

Cat. # Product Name Price
T21001 tetrapandin-1 Inquiry
Contact Us

USA

Address:

Tel: |

Email:

Germany

Address:

Copyright © 2024 Creative Peptides. All rights reserved.