* Please kindly note that our products and services can only be used to support research purposes (Not for clinical use).
HIV-1 protease (PR) is a retrovirus aspartate protease (retrovirus pepsin), an enzyme that hydrolyzes peptide bonds in retroviruses. The life cycle of HIV (the retrovirus that causes AIDS) is essential. HIV protease decomposes the newly synthesized polyproteins (i.e. Gag and Gag-Pol) to produce the mature protein components of HIV virus particles at nine cleavage sites, that is, the infection form of the virus outside the host cells. In the absence of an effective HIV protease, HIV virus particles are still non-communicable.
The oligopeptide containing the consistent retrovirus protease cleavage sequence Ser/Thr-X-Y-Tyr/Phe-Pro is the substrate of the purified recombinant HIV-1 protease. Replacing the lysed dipeptide with reduced Phe-Pro or Tyr-Pro dipeptide alleles or statins compound 3-hydroxy-4-amino-5-phenylvaleric acid, a HIV-1 protease inhibitor with Ki value in the range of micromoles can be obtained by replacing the lysed dipeptide with reduced HIV-1 or HIV-1 dipeptide allele or statins compound 3-hydroxy-4-amino-5-phenylvaleric acid. The affinity of the substrate was three orders of magnitude higher than that of the corresponding substrate. HIV-1 protease inhibitors may provide a new and potential treatment for AIDS.
HIV-1 protease plays an important role in the life cycle of HIV. Like many other viruses, HIV can string its many proteins together to form a long chain. HIV-1 protease, on the other hand, can cut polyproteins into protein fragments of appropriate length, and the timing of this step is crucial. Protease inhibitors can irreversibly occupy the space between enzyme and substrate, so that HIV protease can’t bind to the substrate and hydrolyze the corresponding peptide bond, thus inhibiting the synthesis of functional enzymes and structural proteins needed for the assembly of new viruses. The first HIV protease inhibitor was Saquinavir, produced by Roche in 1995. Then, on March 1, 1996, Ritonavir was also licensed by FDA in the United States. On March 13, 1996, Mercadon Pharmaceuticals’s Indinavir was marketed as the third new HIV protease inhibitor. The FDA-approved HIV protease inhibitors share same structural similarities and a similar binding pattern, which may cause some of the common side effects of the protease inhibitor-containing regimens.
Several new HIV protease inhibitors are undergoing clinical trials. Before the new HIV protease inhibitor stent eliminates the non-targeting effect, the development of HIV protease inhibitor prodrug can reduce the drug dosage and improve the adverse drug reactions. With the accumulation of knowledge about the toxic chemical groups of HIV protease inhibitors, the “benign chemical library” of HIV protease inhibitors can be compiled, which is beneficial to the drug design and research in the future.
References
Creative Peptides has accumulated a huge library of peptide knowledge including frontier peptide articles, application of peptides, useful tools, and more!
The immunomodulator mifamurtide (liposomal muramyltripeptide phosphatidyl ethanolamine [L-MTP-PE]) is a syntheti ...
Ziconotide (previously called SNX-111), currently marketed under the brand name of Prialt, is the synthetic form ...
PR 39, a porcine 39-aa peptide antibiotic, was originally isolated from the upper part of the small intestine o ...
Basic information Desmopressin is a synthetic analogue of the antidiuretic hormone vasopressin used in the treatment of centr ...
MEN 11270 (H-DArg-Arg-Pro-Hyp-Gly-Thi-c(Dab-Dtic-Oic-Arg)c(7γ-10α)) is a novel selective constrained peptide ant ...