We use cookies to understand how you use our site and to improve the overall user experience. This includes personalizing content and advertising. Read our Privacy Policy
Peptide Library Construction and Screening
Powerful screening tools in biological and chemical research
M.F/Formula | C28H46CuN12O8 |
M.W/Mr. | 744.32 |
Sequence | 2(Gly-His-Lys).Cu.2HOAC |
References | Oxidative stress, disrupted copper homeostasis, and neuroinflammation due to overproduction of proinflammatory cytokines are considered leading causative factors in development of age-associated neurodegenerative conditions. Recently, a new mechanism of aging-detrimental epigenetic modifications-has emerged. Thus, compounds that possess antioxidant, anti-inflammatory activity as well as compounds capable of restoring copper balance and proper gene functioning may be able to prevent age-associated cognitive decline and ward off many common neurodegenerative conditions. The aim of this paper is to bring attention to a compound with a long history of safe use in wound healing and antiaging skin care. The human tripeptide GHK was discovered in 1973 as an activity in human albumin that caused old human liver tissue to synthesize proteins like younger tissue. It has high affinity for copper ions and easily forms a copper complex or GHK-Cu. In addition, GHK possesses a plethora of other regenerative and protective actions including antioxidant, anti-inflammatory, and wound healing properties. Recent studies revealed its ability to up- and downregulate a large number of human genes including those that are critical for neuronal development and maintenance. We propose GHK tripeptide as a possible therapeutic agent against age-associated neurodegeneration and cognitive decline. Pickart, L., Vasquez-Soltero, J. M., & Margolina, A. (2012). The human tripeptide GHK-Cu in prevention of oxidative stress and degenerative conditions of aging: implications for cognitive health. Oxidative medicine and cellular longevity, 2012. |
1. Immune-awakening Saccharomyces-inspired nanocarrier for oral target delivery to lymph and tumors
2. High fat diet and GLP-1 drugs induce pancreatic injury in mice
If you have any peptide synthesis requirement in mind, please do not hesitate to contact us at info@creative-peptides.com. We will endeavor to provide highly satisfying products and services.
USA
Address: SUITE 115, 17 Ramsey Road, Shirley, NY 11967, USA
Tel: 1-631-624-4882
Fax: 1-631-614-7828
Email: info@creative-peptides.com
Germany
Address: Industriepark Höchst, Gebäude G830
65929 Frankfurt am Main
Email: info@creative-peptides.com