Constitutive and inflammation-dependent antimicrobial peptides produced by epithelium are differentially processed and inactivated by the commensal Finegoldia magna and the pathogen Streptococcus pyogenes

Frick, I. M., Nordin, S. L., Baumgarten, M., Mörgelin, M., Sørensen, O. E., Olin, A. I., & Egesten, A The Journal of Immunology (2011):1004179.

Epithelial linings serve as physical barriers and produce antimicrobial peptides (AMPs) to maintain host integrity. Examples are the bactericidal proteins midkine (MK) and BRAK/CXCL14 that are constitutively produced in the skin epidermal layer, where the anaerobic Gram-positive coccoid commensal Finegoldia magna resides. Consequently, this bacterium is likely to encounter both MK and BRAK/CXCL14, making these molecules possible threats to its habitat. In this study, we show that MK expression is upregulated during inflammation, concomitant with a strong downregulation of BRAK/CXCL14, resulting in changed antibacterial conditions. MK, BRAK/CXCL14, and the inflammation-dependent antimicrobial β-defensins human β-defensin (hBD)-2 and hBD-3 all showed bactericidal activity against both F. magna and the virulent pathogen Streptococcus pyogenes at similar concentrations. SufA, a released protease of F. magna, degraded MK and BRAK/CXCL14 but not hBD-2 nor hBD-3. Cleavage was seen at lysine and arginine residues, amino acids characteristic of AMPs. Intermediate SufA-degraded fragments of MK and BRAK/CXCL14 showed stronger bactericidal activity against S. pyogenes than F. magna, thus promoting survival of the latter. In contrast, the cysteine-protease SpeB of S. pyogenes rapidly degraded all AMPs investigated. The proteins FAF and SIC, released by F. magna and S. pyogenes, respectively, neutralized the antibacterial activity of MK and BRAK/CXCL14, protein FAF being the most efficient. Quantitation and colocalization by immunoelectron microscopy demonstrated significant levels and interactions of the molecules in in vivo and ex vivo samples. The findings reflect strategies used by a permanently residing commensal and a virulent pathogen, the latter operating during the limited time course of invasive disease.

Products Used in this Publication

hBD-2

hBD-3

Related Products

Cat. # Product Name Price
AF2486 RhBD-1 Inquiry
AF2560 HBD-28 Inquiry
AF2880 Human beta-defensin-2 WT hBD - 2 Inquiry
AF2968 HBD-26 Inquiry
AF3116 HBD-27 Inquiry
Contact Us

USA

Address:

Tel: |

Email:

Germany

Address:

Copyright © 2025 Creative Peptides. All rights reserved.